
© Ufo Media Design – TagsRepublic : Data Matrix Reader Package

Table of Contents

Table of Contents..1

1. Introduction..2

Important Notices...3

Requirements..4

Features and Specifications...5

2. JavaScript Integration...6

Overview...7

Setting up..7

3. ActionScript Integration..12

Overview...13

Setting up..13

4. Parameter Tables..18

5. Basic Parameters...20

6. Advanced Parameters...21

7. ActionScript-Only Parameters...24

8. Notes..25

9. Package Contents..26

10. Rights and Warranties...27

1. Introduction

Thank you for purchasing our Data Matrix Reader Software Solution!

The "Data Matrix Web Package" : Reader is a software module that will empower
your site or rich web application with the possibility of decoding 2D Data Matrix
codes inside an online, "in-browser" environment. Our software component suite
allows for fast and efficient integration of Data Matrix barcode reading technology
into online applications. Expand the way you manage information in your web
applications with this innovative approach.

This manual is a setup guide that can be used as a reference when integrating our
component into your, or your customers' third-party multiplatform applications /
websites.

Yours truly,
 The TagsRepublic / Ufo Media Design Team.

2

Important Notices

Before using our Software, please read the instructions carefully and follow the
software package examples in order to obtain the best results.

Please read the conditions from "Rights and Warranties" section : using this
Software is conditioned by the reading and accepting of aforementioned terms.

Information presented in this manual refers strictly to the software component /
module / package delivered along with the reference document. This information
might not be necessary applicable to older / updated versions of our products.

The purpose of this manual is helping developers integrate our components
seamlessly by describing the embedding process, component parameters and
configuration options. However, it is not dedicated to (focused on) the final Data
Matrix Reader application users / consumers.

Ufo Media Design SRL reserves the right to make any changes in new revisions of
this manual without any notice.

3

Requirements

Target System Recommendations

These system specifications are recommended in order to build up a strong end-user
experience for applications embedding "DM Web Package Reader" component. They
do not represent a minimal requirements specification:

● Webcam capable of 640 x 480 @ 30 FPS resolution with corresponding camera
permissions;
● 1.6 GHz “Core” Class CPU / 1GHz Cortex A8 Class CPU for Android deployment.
● 1GB System Memory (RAM) / 512MB RAM for Android deployment;
● Adobe Flash Player 10+ enabled browser or Adobe AIR running on Windows,
Linux or OS X / AIR for Android runtime;

Depending on camera stream resolution and Reader configuration, these
specifications can be lowered: e.g. 512MB ram, Atom CPU class. The DM reader
module should work on any webcam type. It was designed to work mainly with
notebook / netbook cameras, but it should also work with extremely cheap
webcams. A camera capable of 640x480 capture resolution is recommended for
better detection rates. An auto-focus / manual focus camera could be required in
order to read smaller barcode prints. On Android devices, the Data Matrix Reader
component should be embedded into an AIR application since camera support is not
included in Flash Player for Android at the time of writing.

Development System – Additional Software Requirements

● for the JavaScript Package : a local / testing web-server software solution
● for the ActionScript Package : Flex SDK, Flash Professional or Flash / Flex Builder;
optionally : Google Android SDK, Adobe AIR SDK

4

Features and Specifications

● reader core version : 1.9.8
● detects 2D Data Matrix square and rectangular markers;
● reads 1x1, 1x2, 2x2, 4x4 Data Grid ECC200 Data Matrix symbols with / without
interleaving;
● decodes error corrected information from : ASCII, C40, Text, Base 256, Edifact,
ANSI x12 encoding schemes;
● light on dark contrast code (e.g. white codes on black background) support can
be enabled through a dedicated parameter;
● accompanied by usage examples or public method and property specification
documents;
● accepts size, camera, timing, smoothing and many other public parameters;

JavaScript Package Component:
● simple and fast deployment in a HTML / JavaScript browser environment;
● JavaScript communication interface; suited for Ajax applications;
● offers methods and properties for starting and stopping the decoding stream;
● returns the decoded string through a JavaScript function call;
● provides an interface for Javascript calls / call-backs;
● comes as a stand-alone, SWF compliant file;
● focused on webpage integration;

ActionScript Package Component:
● targets Flash Professional / Flash Builder / Flex SDK / AIR applications;
● more customization possibilities if embedded properly;
● delivered as a SWC component;
● mobile devices support through Air for Android;

5

2. JavaScript Integration

Overview

Our Data Matrix Reader can be easily integrated into any HTML page, similar to any
other *.swf / Flash file by using the <object> <embed> tags. In order to take full
advantage of the Reader's functionality you must also define a few basic JavaScript
functions that communicate with the Reader's JavaScript Interface.

Customization of the Reader to your desired look, feel and functionality is
accomplished by setting a number of parameters from the basic types. One can start
by changing the visualization part and than move on to the more advanced
parameters which allow tweaking the decoding process / performance or even the
types of codes which can be read.

Please read the following “Setting up” paragraph and try out the examples from the
“example” folder of the delivered package to get a better idea on how to use our
Reader.

The Flash Component runs under remote Security SandBox type. Testing and using
the Data Matrix JavaScript Package : Reader requires a server type environment.
Running the Reader locally will not allow access to the component's JavaScript
interface due to browser security policies.

Setting up

Defining the Javascript functions. Examples.

Working with the JavaScript interface implies the existence of a barcodeRead(code)
callback function which is called by the Flash component. If this function is not

7

defined or doesn't return the “ok” string JavaScript interface calls shall be stopped
for the duration of the decoding session. The other two functions [StopDecoder()
and StartDecoder()] are calls from JS to the *.swf module which can be used to
obtain the desired behavior from the Reader component.

These function can be defined in a JavaScript file which is imported in the HTML
page [<script src= "./scripts/dmreader.js" type = "text/javascript"></script>] or
directly inside the <script> tag.

● barcodeRead(code) - this is a JS call function from Flash. The function is called
whenever a code is detected. Once a code is detected, the Flash decoder waits for
cbi seconds (default 2000ms) before making another call (only when a code is
continuously found). This function must return "ok" in order to have a call
confirmation. Optionally, in this time interval the StopDecoder function could be
called or the decoder can be unloaded / hidden / destroyed / etc. Example:

function barcodeRead(code)
{
 document.getElementById("codearea").innerHTML = code;
 // just display the code inside a div with "codearea" id
 return "ok";
 // must return “ok” or else no further calls will be made
}

● StopFlashDeccoder() - this is a JS callback function JS » Flash. It puts the decoder
on hold without destroying it. It only works after the user allows the camera to
capture from Flash (Adobe Flash Player settings » Allow). The decoder is started
automatically once webcam rights are granted. Example:8

function StopFlashDecoder()
{
 GetSwfDecoder("dmreader").StopDecoder();
 // pauses the decoder;
 // uses the GetSwfDecoder() function defined bellow;
}

● StartFlashDecoder() - this is a JS callback function JS » Flash. Starts the decoder if
it was put on hold by StopDecoder. It only works after the user allows the camera to
capture from Flash (Flash Player settings » Allow). Example:

function StartFlashDecoder(code)
{
 GetSwfDecoder("dmreader").StartDecoder();
 // resumes the decoding process;
}

● GetSwfDecoder(swfName) - gets the embedded element object. Simple and very
useful function to get a reference to swf object by it's name (the swfName function
parameter).

function GetSwfDecoder(swfName)
{
 if (window.document[swfName])
 return window.document[swfName];
 // other browsers
 if (navigator.appVersion.indexOf("MSIE")!=-1)
 return document.getElementById(swfName);
 // IE browsers

 return document[swfName];
}

9

Setting the parameters.

All parameters can be set when you embed the Reader inside a HTML page. They are
passed through the string that sets the value of the <param> tag with
name="movie" and the src property of the <embed> tag.

The string is formatted in the following way:
"DMReaderSwfURL?parameter01=value01¶meter02=value02 ..."

● DMReaderSwfURL refers to the address where the Reader is located relative to
the page / app root. All available parameters, alongside their default values (when
they are not explicitly set) are defined and described in the Basic and Advanced
Parameters chapters.

● Besides these parameters you can also set the actual (visual) width and height of
the Reader inside the web page via the width/height properties of the <object> and
<embed> tags. The Reader will scale and crop automatically according to these
properties.

10

HTML Embedding Example.

● Here is a simple HTML embedding example setting a few simple parameters
 (cw – camera width, ch – camera height, deti – detection interval).

● The object's classid property must always be set in order to maintain JavaScript
interface functionality (as in our example).

<object classid = "clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
 width = "640"
 height = "360"
 align = "middle">

 <param name = "quality" value = "high" />
 <param name = "scale" value ="noscale" />
 <param name = "salign" value ="lt" />
 <param name = "bgcolor" value ="#000000" />
 <param name = "allowScriptAccess" value ="always" />
 <param name = "movie"
 value = "../reader/dmreader.swf?cw=320&ch=240&capi=40"/>

 <embed src = "../reader/dmreader.swf?cw=320&ch=240&capi=40"
 bgcolor = "#000000"
 width = "640"
 height = "360"
 quality = "high"
 align = "middle"
 type = "application/x-shockwave-flash"
 allowScriptAccess = "always"
 pluginspage="http://www.macromedia.com/go/getflashplayer"
 />
</object> 11

3. ActionScript Integration

Overview

Our The "Data Matrix ActionScript Package" : Reader is dedicated to ActionScript
developers requiring a robust DM barcode reading solution. As opposed to our
JavaScript Package, component embedding and customization is done directly by
using a development and deployment environment native to our software module.

Whether you work with Flash Professional CS4+, Flash / Flex builder, Haxe or with
the Flex SDK command line compilers, you can easily integrate the DMReader
module just like any other *.swc component. Our module targets different
enviroments : Flash , AIR Applications, AIR for Android and can be deployed across
multiple platforms.

Please read the following “Setting up” paragraph and take a look over the sample
source code from the delivered package in order to get a better idea on how to use
our Reader.

Setting up

Development Environment.

Working with the The first step when integrating the Data Matrix Reader
component into any ActionScript project is represented by the library embedding
process.

The examples delivered along the ActionScript package address two different
environments : Adobe Flash Professional for design oriented developers and the
Flex SDK framework for open source oriented development.

13

● When integrating the Reader into a Flash project, you should add the module to
your project by specifying the path to the library:

 1. Open your *.fla project
 2. Go to the File Menu > Publish Settings
 3. Publish Settings > select the Flash tab
 4. Flash tab > click on the Settings button
 5. Settings > select the Library Path tab
 6. Click on the "plus button" (add new path) and add the path to the
 "DMReaderLib.swc" library

● When integrating the Reader into a Flex SDK application (compiled through the
command line mxmlc compiler):

 1. either specify the library path directly to the compiler with the "library-path"
 option (mxmlc -library-path+=path_to_swc ...)
 2. or add it to a compiler cofiguration XML file in the compiler section as:

 <library-path append="true">

 <path-element>path_to_swc</path-element>

 </library-path>

Please refer to the howto.txt file (located in the examples folder) when compiling
the examples for specific / trageted building process information and requirements.
Direct building of the Flex example can be accomplished by running the build scripts
(.bat for Windows ; .sh for Unix – included in the example).

Public Methods and Properties.

After the working environment was set up and the library was embedded properly,
the first lines that should be added to your project / application are classes imports.

14

Two main Data Matrix Reader classes must be imported alongside the default Flash
class / package imports:

● import ufo.DMReader;
● import ufo.DMRParameters;

The DMReader class represents the main Data Matrix Reader object class and the
DMRParameters class the parameter set definition class. When defining a call-back
function, the flash.geom.Point class must also be imported.

Instantiation of the Reader object is done through a simple constructor. For e.g.
 var DMScanner : DMReader = new DMReader();

After object creation, we can start configuring the Reader's appearance and
behaviour:

● width, height – DMReader object properties referring to the Data Matrix reader
canvas size (implemented through internal setter and getter methods). Cropping
and scalling is done automatically by the reader component. For e.g.
 DMScanner.width = 640;
 DMScanner.height = 360;

● SetParameter – DMReader method used when setting / configuring the Reader.
This method is also used when registering the call-back function or changing the
Video source. It accepts static parameters defined in the DMRParameters class.
These parameters are presented in the Parameter chapters.

 DMReader.SetParameter(DMRParameters.PARMETER, parameter_value) : void;
 For e.g.
 DMScanner.SetParameter(DMRParameters.MARKER_COLOR , 0xCA0641);

15

● Start – Method that starts / resumes the decoder if it was put on hold (created
"on hold") or if it was just created. (Must call the Initialize() method before)
 DMReader.Start() : void;
 For e.g.
 DMScanner.Start();

● Stop – Mehtod that puts the decoder on hold / pauses without destroying the
Reader object. (Must call the Initialize() method before)
 DMReader.Stop() : void;
 For e.g.
 DMScanner.Stop();

● Initialize – Mehtod that initializes the Data Matrix Reader object : no internal
reader structures are initialized / allocated before this method is called. It prepares
the beginning of the decoding process. All parameters must be set with
SetParameter(...) before this method is called.
 DMReader.Initialize() : void;
 For e.g.
 DMScanner.Initialize();

● Registering the call-back function : In order to take full advantage of the Data
Matrix reading process, we must make use of the decoded string and optionally of
the marker's quadrilateral coordinates. The Reader object communicates with the
master application by triggering a registered call-back function. The call-back
function must be structured in a fixed way:

function DMRCallBack(CodeText:String, P1:Point, P2:Point, P3:Point, P4:Point) : void;
where CodeText represents the decoded string and P1, P2, P3, P4 represent the
marker quad coordinates relative to the processed frame size.

16

Registering the callback function through the SetParameter method:
DMSCanner.SetParameter(DMRParameters.REGISTER_CALLBACK, DMRCallBack);

Please refer to the package examples for : setting a custom Video / camera stream ,
modifying the marker overlay appearance / behaviour and multiple parameter
usage.

 Writting a Simple Application.

package
{
 import flash.display.MovieClip;
 import flash.geom.Point;
 import ufo.DMReader;
 import ufo.DMRParameters;

 public class DMRExampleApplication extends MovieClip
 {
 private var DataMatrixReader : DMReader;

 public function DMRExampleApplication()
 {
 DataMatrixReader = new DMReader();
 this.addChild(DataMatrixReader);

 DataMatrixReader.SetParameter(DMRParameters.MARKER_COLOR,0xCA0641);
 DataMatrixReader.SetParameter(DMRParameters.REGISTER_CALLBACK,CodeFound);

 DataMatrixReader.Initialize(); // call before starting the decoder
 DataMatrixReader.Start();
 }

 private function CodeFound(Code:String,P1:Point,P2:Point,P3:Point,P4:Point):void
 {
 trace(Code); // do nothing, just trace the code
 }
 }
}

17

4. Parameter Tables

‹ Table 1 › Full Parameter List

Parameter
Equivalent

JavaScript
Package

ActionScript
Package

❶ Camera Width cw CAMERA_WIDTH

❷ Camera Height ch CAMERA_HEIGHT

❸ Camera Frames Per Second cfps CAMERA_FPS

❹ Marker Overlay Color color MARKER_COLOR

❺ Displayed Video Stream Smoothing smooth SMOOTH_VIDEO

❻ Show Detected Code Value show SHOW_CODE

❼ View / Show Marker Interval vmi SHOW_MARKER_INTERVAL

❽ Video Stream Capture Interval capi CAPTURE_INTERVAL

❾ Callback-Function Interval cbi CALLBACK_INTERVAL

❿ Detection Level level DETECTION_LEVEL

⓫ Detected Code Filter filter CODE_FILTER

⓬ Fixed Frame Rate ffps FIXED_FRAME_RATE

⓭ Threshold Box Blur Kernel Size tbs THRESHOLD_BOX_SIZE

⓮ Detection Mode mode DETECTION_MODE

⓯ External Video Stream Source (NotAvailable) SOURCE_VIDEO

⓰ Callback Function Registration (NotAvailable) REGISTER_CALLBACK

⓱ Hide Default Marker Overlay (NotAvailable) HIDE_MARKER
18

‹ Table 2 › Default Parameter Values

Parameter Value Default Comment

❶ Camera Width Integer 640 (pixels) depending on cam

❷ Camera Height Integer 360 (pixels) depending on cam

❸ Camera Frames Per Second Integer 30 (fps) depending on cam

❹ Marker Overlay Color Integer 13434624 (24bit RGB)

❺ Displayed Video Smoothing Boolean false (no smoothing)

❻ Show Detected Code Value Boolean true (overlay text visible)

❼ View / Show Marker Interval Integer 1000 (milliseconds)

❽ Video Stream Capture Interval Integer 20 (milliseconds)

❾ Callback-Function Interval Integer 2000 (milliseconds)

❿ Detection Level 1-7,11,12,21,22 5 (square codes only)

⓫ Detected Code Filter String none (no filter defined)

⓬ Fixed Frame Rate Boolean true (fps locking)

⓭ Threshold Box Blur Kernel Size Integer 0 (auto) (depending on
frame resolution)

⓮ Detection Mode 0, 1, 2 0 (0 = black on white)

⓯ External Video Stream Source Video null (default cam used)

⓰ Callback Function Registration Function null (no callbacks)

⓱ Hide Default Marker Overlay Boolean false (visible) 19

‹ Table 3 › Parameter Types

Basic Parameters ❶❷❸❹❺❻

Advanced Parameters ❼❽❾❿⓫⓬⓭⓮

ActionScript Package only ⓯⓰⓱

5. Basic Parameters

❶❷ Camera Width and Height have a major impact in decoding accuracy (the
bigger the resolution, the better the detection) but also affects the overall
performance of the application, as a larger image has to be processed. By setting the
camera resolution you set the actual resolution used in the detection process; the
cam resolution can differ from the one displayed in the actual Reader.

❸ Camera Frames Per Second is usually set to 30 fps, but this property is highly
dependent on the actual hardware properties of the webcam (most webcams have
support for 30fps at 640x480 resolution). If the camera doesn't have support for the
set fps at the used resolution, the value for the fps will automatically be reduced.

❹ Marker Overlay Color can be set as a 24 bit integer value (the default 13434624
is the equivalent of 0xCCFF00 in hex). The Marker refers to the color quadrilateral
drawn over the found code.

❺ Displayed Video Stream Smoothing parameter affects the quality of the
displayed video stream and has no effect on the quality of the detection. Setting this
parameter to true will also affect the overall performance of the application (it uses
quite a lot of the CPU's capabilities). We recommend setting it to true only when a
lower camera resolution is displayed at higher one (e. g. a camera resolution at

20

320x240 is displayed in browser at 640x480) or when the target machine disposes of
enough hardware capabilities.

❻ Show Detected Code Value over the Marker and on the transparent bar at the
bottom of the Reader. If you do no wish for the user to see the detected code, set
this parameter to false.

6. Advanced Parameters

❼ View / Show Marker Interval refers to how long will the marker be shown after a
successful detection, this offers a continuous visual experience (if one or two frames
are dropped at a 25fps detection, the end user shall not see them, as the marker is
drawn even during these frames).

❽ Video Stream Capture Interval is an important parameter in the overall
performance of the application (lower means more fps and smoother detection, but
only on capable hardware) and is given in milliseconds (at 40ms the reader tries to
detect at 25FPS = 1000 / 40). For machines with lower or average specs it is
recommended to increase the value. When setting this parameter you should keep
in mind the target user's hardware; usually, by decreasing the camera resolution you
can process/detect at higher FPS.

❾ Callback-Function Interval refers to the minimum interval (in milliseconds)
between two consecutive Callback Function calls for the same detected code. This
means that if the same code is found, let's say 60 times in 3 seconds (at 20 fps
detection and a capture interval of 50), the Reader executes only 2 Callback Function
calls (at a Callback Interval set 2000ms). For the JS version this is an useful
parameter as it provides a simple way to limit the navigateToURL calls, which are
slow.

21

❿ Detection Level defines the method used by the Reader's detection algorithm to
process the captured frame. It controls which type of codes can be detected (square
only: 1-7; rectangular only: 11,12; mixed/both: 21,22), the Recognition Rate (of
small, damaged, skewed markers under different angles) and False Positives Safety
(1-3 levels are prone to false positives but can decode even badly damaged codes). If
you only plan to use use square or rectangular codes, we recommend using the
appropriate level to reduce method complexity / CPU load (or leave it default).

‹ Table 4 › Detection Level

Detection
Level

Detected
Codes

Recognition Rate /
False Positives Safety Method Notes

1 square* Very High / Low Brute Force

2 square High / Medium Low Single Sync

3 square Medium High / Medium Low Single Sync + MidPoints

4 square Medium / Medium Double Sync

5 square Medium / Medium High Double Sync + MidPoints

6 square Decent / High Double Sync

7 square Decent / Very High MidPoints

11 rectangular Decent / High Double Sync

12 rectangular Decent / Very High Double Sync + MidPoints

21 both Decent / High Double Sync / MidPoints

22 both Decent / Very High Double Sync + MidPoints
*only square codes of 1x1, 2x2 DataGrid size

⓫ Detected Code Filter defines a string_prefix for the decoded string. The Reader
processes, shows and sends only the codes starting with the string_prefix. This is a
good feature for the reduction of False Positives Probability. You can also use this

22

feature in order to select only codes matching your specification (e.g. : codes that
start with "codes" can be set and displayed in the JS version with:
"../reader/dmreader.swf?filter=codes" or in the AS version by calling the method:
SetParameter (DMRParameters.CODE_FILTER, “codes”);).

⓬ Fixed Frame Rate adds a frame processing rate limitation if set to "true": The
frame processing rate doesn't exceed the current Camera FPS. Useful in order to
keep the CPU usage bounded to the maximum available Camera stream frame rate.
In some cases it sacrifices displayed stream "smoothness" for lower CPU resources.
If set to "false", all available stream frames are processed.

⓭ Threshold Box Blur Kernel Size controls frame / image pre-processing (the
threshold / binarization process). It can be set with a integer value (e.g. 40). The
default value is 0 : Automatic Box Blur Kernel Size depending on camera resolution.
Manual setting is recommended only for controlled usage environment.

⓮ Detection Mode refers to what type of barcodes can be detected (normal: black
on white background or inverted). The default value is 0 = normal black or dark-
colored codes on a white background. If you only plan to use normal or inverted
codes, we recommend setting only the appropriate mode (or leave it default).

‹ Table 5 › Detection Mode

Detection Mode Detected codes

0 black on white (normal)

1 white on black (inverted)

2 both (normal + inverted) 23

7. ActionScript-Only Parameters

⓯ External Video Stream Source allows you to change the default video source
(from the default camera) used by the Reader. E.g.
DMDecoder.SetParameter(DMRParameters.SOURCE_VIDEO, AlternativeVideo);

Once you set a custom input stream, you cannot alter the FIXED_FRAME_RATE
parameter. In this case it will be automatically defaulted to "false".

⓰ Callback Function Registration sets the Callback Function which is triggered /
called when a valid code is detected by the Data Matrix Reader component. E.g.
DMDecoder.SetParameter (DMRParameters.REGISTER_CALLBACK, CodeFound);

The Callback function must be defined with a specific set of parameters:
Decoded_Text (String) and 4 (four) points, which define the four corners of the
detected Marker quadrilateral. E.g..
function CodeFound(Decoded_Text:String,P1:Point,P2:Point,P3:Point,P4:Point):void

⓱ Hide Default Marker Overlay can be set to true to hide the default Marker
quadrilateral which is drawn over the detected code. E.g.
DMDecoder.SetParameter (DMRParameters.HIDE_MARKER, true);

This parameter can be used in conjunction with the Callback function to display a
custom marker (using the 4 points as reference).24

8. Notes

● The actual intervals may vary due to machine, browser and run – time
environment issues.

● By adjusting the parameters you can get a smooth user experience even on
slower machines

● Decoding accuracy is highly dependent: on image or video quality under specific
lighting conditions, on marker printing quality, positioning and on camera
capabilities.

● If you encounter any issues in using our software, feel free to contact us.

25

9. Package Contents

The following sections outline the basic folder structure and contents of the
corresponding delivered packages.

JavaScript Package

 ► documentation ● Data Matrix Reader instructions manual

 ► example ● a simple web page which loads a few examples of the
reader with different parameters

 ► lib ● Data Matrix Reader SWF component

ActionScript Package

 ► documentation ● Data Matrix Reader instructions manual

 ▼ examples ● examples folder

 ▼ for_flash ● examples for Adobe Flash Professional CS4+

 ► 1 – basic ● importing the library and setting a callback function

 ► 2 – customInterface ● creating a custom interface and setting parameters

 ► 3 – customVideo ● using a custom video and creating a custom marker

 ► for_flex_sdk ● simple example for Adobe Flex SDK

 ► lib ● Data Matrix Reader SWC library26

10. Rights and Warranties

This is an agreement between you (either as an individual or as a commercial entity) and Ufo Media Design
SRL. Please read the following terms and conditions: using this Software is conditioned by reading and
accepting of all aforementioned terms. For the following, Provider shall mean "Ufo Media Design", Software
shall refer to the "TagsRepublic Data Matrix Web Package Reader" and Licensee shall represent the Person
or Entity which acquired the right to use this Software. Reader shall refer to parts of the Software delivered
as Complied Code.

I The Provider grants the Licensee a non-exclusive license for using and embedding the
Software according to the following terms.

II The Software is protected by international legislation regarding intellectual property. The
rights granted to you constitute an embedding license and not a transfer of title (the
Software is not sold or otherwise transferred).

III The Provider warrants to be the creator of the Software, and to be the sole owner of all
intellectual and/or industrial property according to the Software. The Provider guarantees
the Software does not infringe any rights of third parties.

IV The Licensee may not assign / attribute any rights hereunder without the prior written
approval of the Provider. Any attempt to assign any rights, duties, or obligations hereunder
without the Provider's written consent will be void.

V In no event will the Provider be liable to the Licensee or any other individual or entity
connected with the Licensee for any claim, loss, or damage of any kind or nature, arising out
of or in connection with the performance of this Software (or other related components).
Any interruption or loss of service or use of the Software, or any files, data or other
computer systems shall in no way cause liability to the Provider.

VI The Licensee is prohibited, except as expressly authorized under the present terms, from:
a) using the Software on behalf of third parties, except when specified otherwise;

27

b) selling, renting, leasing, lending or granting other rights (on) Software including rights
on a membership or subscription basis.

VII The Licensee shall not reverse engineer, decompile, disassemble or otherwise attempt to
discover the Source Code of the Software or it's components delivered as Compiled Code.

VIII The Licensee may use / embedded the Software in only 1 (one) commercial or public
application (e.g. site, web app) instance at a time. By completely removing the Software from
a application in which it was used / embedded, the Licensee has the right to reuse the
Software in another application with the mentioning that the Software shall be used /
embedded in only one application at a time. In this case, the Licensee shall guarantee the
complete removal of all files which are the intellectual property of the Provider from any
program or application in which the Software was used / embedded before.

IX The Licensee has the right to sell 1 (one) application which uses / embeds the Software to a
third party. In this case, the Licensee shall take all appropriate measures to guarantee that
the aforementioned third party shall comply with the present terms; also, by selling an
application which uses the Software, the Licensee shall forfeit the right to use / embed the
Software in other applications. The Provider grants the usage right to such a third party only
in an application developed by the Licensee and which become the property of such third
party, but doesn't grant (to aforementioned third party) any redistribution, adaptation,
copying, embedding rights or the right to use in demos or tests. Any other use requires the
written consent of the Provider.

X The Licensee can modify or alter portions of the Software, except the components and files
supplied as Compiled Code. The Licensee is prohibited to distribute or make public any part
of the Software delivered as Source Code; the Source Code can only be used in order to build
a compiled, customized version of the Software.

XI The Reader and all of its copies are the intellectual property of the Provider. The structure,
organization and code of the Reader are valuable and confidential information of the
Provider. These terms do not grant the Licensee any intellectual property rights on the
Reader and all rights not expressly granted are reserved by the Provider.

28

XII The Provider guarantees that the Software components delivered as Compiled Code do not
contain any malware, malicious code, or any other types of virus, trojan, spying, unwanted
software that violates the security, confidentiality and integrity of any target system. Any
security holes that could be generated in conjunction with the use of the Software or its
target system shall not make the Provider liable for any resulted loss or damages.

XIII Any malfunction or inconsistency of the Software caused by changes or modifications (new
versions, upgrades, updates, etc.) of other third party supporting platforms (e.g. “Adobe
Flash Player Run-time”), will not derive any responsibility to the Provider.

XIV The Licensee undertakes not to embed the Reader in sole proprietary service applications
that could provide to other third party applications, the same functionality as the Reader.

XV The Licensee may use the Software for as long as the Licensee elects to do so. The Provider
does not enforce any limit to the license period of the Software, except when the Licensee is
in breach of the present terms.

XVI The Licensee has the right to use / embed the Reader in as many noncommercial, nonpublic
applications (property of the Licensee) as he / it wishes (e.g. test, demos). The Licensee
undertakes not to provide access to such applications (it is forbidden to upload the Software
on publicly accessible websites). The publication of such applications requires the written
consent of the Provider.

XVII Should any provision of this Agreement become invalid or unenforceable or should the
License contain an omission, the remaining provisions shall be valid and enforceable and not
affect the validity of the remainder.

XVIII Any dispute, controversy or claim arising out or in relation to this licensing terms and
conditions shall be settled through negotiations between Parties. If the Parties fail to settle
the dispute amicably, any outstanding dispute or difference between them may be referred
or submitted to the Provider's territory courts and in accordance with the jurisdiction of the
Provider's local law.

29

Tags Republic
Ufo Media Design SRL
contact@tagsrepublic.com
www.tagsrepublic.com

© UFO MEDIA DESIGN 2010 - 2011
Adobe, Adobe Flash Player, Swf, Action Script are either registered trademarks or trademarks of Adobe Systems Incorporated. All
other trademarks are the property of their respective owners.

	Table of Contents
	1. Introduction
	Important Notices
	Requirements
	Features and Specifications

	2. JavaScript Integration
	Overview
	Setting up

	3. ActionScript Integration
	Overview
	Setting up

	4. Parameter Tables
	5. Basic Parameters
	6. Advanced Parameters
	7. ActionScript-Only Parameters
	8. Notes
	9. Package Contents
	10. Rights and Warranties

